Synthesis and Lithiation of Monosilylated 1,3,5,7-Octatetrayne

Masahiko YAMAGUCHI,* Kazuhiko TORISU, Shigeo NAKAMURA, and Toru MINAMI

Department of Applied Chemistry, Kyushu Institute of Technology,

Sensui-cho, Tobata, Kitakyushu 804

Unstable monosilylated 1,3,5,7-octatetrayne was synthesized and lithiated with butyllithium. The resulted lithium acetylide added to aldehydes and a ketone giving tetraynols in high yields.

Conjugated polyynes are an interesting group of substances for their biological activities¹⁾ and polymerization abilities.²⁾ Although mono-protected polyynes can be convenient building blocks for the preparation of various polyyne derivatives, their instability has limited the use in organic synthesis.³⁾ The synthesis of monosilylated 1,3,5,7-octatetrayne and its lithiation⁴⁾ are noted here.

Bis-1,8-(t-butyldiphenylsilyl)-1,3,5,7-octatetrayne (1), prepared by dimerization of 1-(tbutyldiphenylsilyl)-1,3-butadiyne,⁵⁾ was treated with lithiated phenylacetylene in THF-HMPA at -78 °C, and selective mono-desilylation was conducted (Scheme 1). The use of the acetylide is essential in this reaction, and nucleophilic MeLi⁶⁾ resulted in decomposition. Since 1-t-butyldiphenylsilyl-1,3,5,7-octatetrayne (2) obtained was extremely unstable at concentrated state, it was handled as a solution. A typical procedure for the preparation of a THF-hexane solution of 2 is as follows: Under a nitrogen atmosphere, a THF-hexane solution (10 and 4.3 mL) of lithium phenylacetylide was prepared from phenylacetylene (780 mg, 7.7 mmol) and butyllithium (6.6 mmol) at -78 °C. HMPA (2 mL) and a THF (10 mL) solution of 1 (2.0 g, 3.5 mmol) was added, and the mixture was stirred at the temperature for 1 h.⁷) The reaction was quenched by adding water, and organic materials were extracted twice with ether. Combined extracts were washed with water and brine, and dried over Na₂SO₄. After most of the solvents were removed under reduced pressure, the residue was flush chromatographed with hexane as the eluent. Fractions containing 2 were collected and concentrated to a small volume. Attention must be paid that the solvents are not removed completely, otherwise 2 polymerizes instantaneously. The volume of the solution was adjusted to 8 mL by adding THF, and the resulted THFhexane solution of 2 was stored at -30 °C over molecular sieves 4A. UV (hexane) λ_{max} (log ϵ) 264 (5.54), 251 (5.53), 240 (5.27) nm. The yield (1.04 g, 89%) was estimated by concentrating a part of the solution and weighing the polymer.

Lithiation of 2 proceeded smoothly with n-butyllithium in THF at -78 °C for 30 min, and the acetylide 3 added at the temperature to aldehydes and a ketone in high yields (Table 1). The adducts were stable enough for usual workup.

Table 1. Addition Reactions of Lithiated Octatetrayne 3 to Aldehydes and a Ketone

Carbonyl compound ^{a)}	Yield/% ^{b)}
t-BuCHO	83
n-C ₄ H ₉ CHO	80
n-C ₆ H ₁₃ CHO	86
n-C ₃ H ₇ CH=CHCHO	88
PhCHO	75
	87

a) Acetylide was used in 1.5–2 molar excess. b) All the products gave satisfactory H-NMR, C-NMR, IR, and elemental analysis by HRMS.

Removal of *t*-butyldiphenylsilyl group from the adduct was carried out by an alkaline treatment in THF-water as shown in Scheme 2. H-NMR spectra of unstable polyyne 4 was obtained after careful silica gel chromatography with hexane-ethyl acetate and solvent exchange to CDCl₃-CCl₄. H-NMR (CDCl₃-CCl₄) δ 1.0-2.0 (11H,m), 2.12 (1H,s). UV (hexane) λ_{max} (log ϵ) 236 (4.81), 224 (4.71) nm.

Financial support from the Tokuyama Science Foundation is gratefully acknowledged.

References

1) For recent examples of natural conjugated polyyne compounds; T. Kusumi, I. Ohtani, K. Nishiyama, and H. Kakisawa, *Tetrahedron Lett.*, **28**, 3981 (1987); M. D. Lewis and R. Menes, *ibid.*, **28**, 5129 (1987). 2) Examples of the solid phase polymerization of butadiyne derivatives; H. Bässler, *Adv. Polym. Sci.*, **63**, 1, (1984); V. Enkelmann, *ibid.*, **63**, 91 (1984). 3) R. Eastmond, T. R. Johnson, and D. R. M. Walton, *Tetrahedron*, **28**, 4601 (1972). 4) The formation of lithiated hexatriyne was reported by employing the method of Ref. 6: M. D. Lewis, J. P. Duffy, J. V. Heck, and R. Menes, *Tetrahedron Lett.*, **29**, 2279 (1988). 5) 1-(*t*-Butyldiphenylsilyl)-1,3-butadiyne was prepared by employing the method of Zweifel, and dimerized with Hay catalyst: G. Zweifel and S. Rajagopalan, *J. Am. Chem. Soc.*, **107**, 700 (1985); G. E. Jones, D. A. Kendrick, and A. B. Holmes, *Org. Synth.*, **65**, 52 (1987). 6) A. B. Holmes, C. L. D. Jennings-White, and A. H. Schulthess, *J. Chem. Soc.*, *Chem. Commun.*, **1979**, 840. 7) An attempt to trap the intermediate lithium acetylide with an aldehyde did not give the adduct.

(Received September 6, 1990)